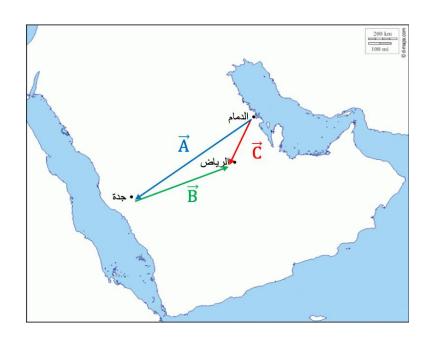


(Chapter 1)

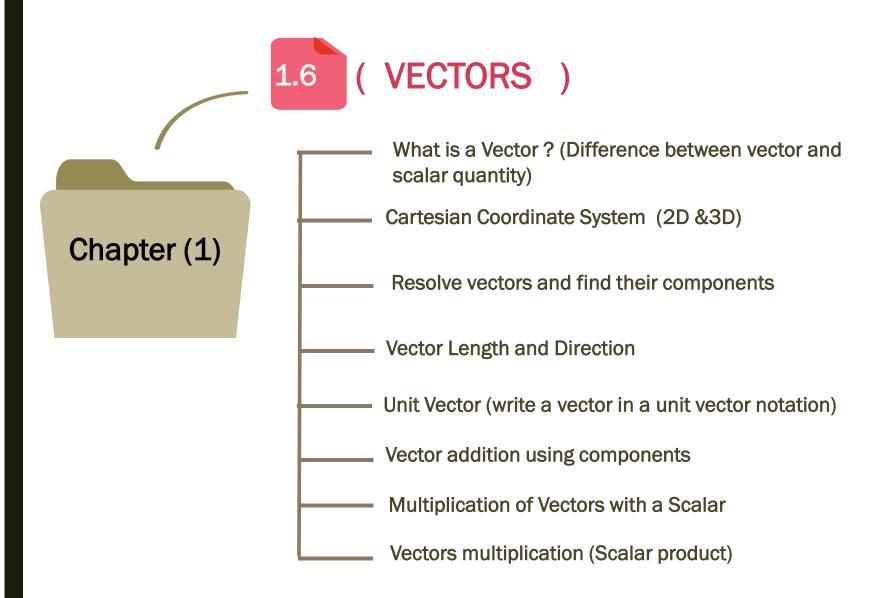
Overview



Learning Outcomes

After studying this chapter, you will be able to:

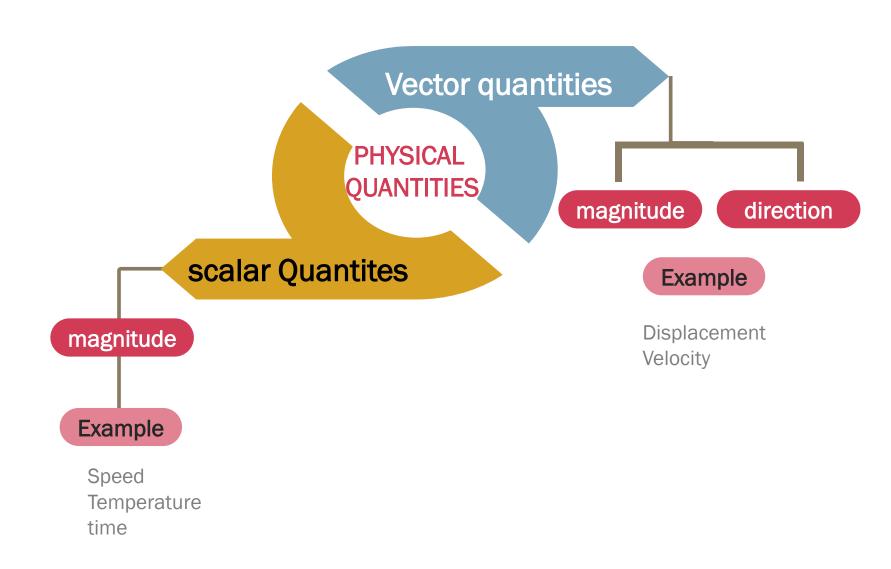
- 1. Define vector quantity.
- 2. Differentiate between vector and scalar quantities.
- 3. Understand the Cartesian coordinate system.
- 4. Resolve any vector and find its components.
- 5. Calculate the magnitude and direction of vectors.
- 6. Identify the unit vectors (magnitude and direction) on three axes.
- 7. Write a vector in a unit vector notation.
- 8. Add vectors by components.
- 9. Multiply vectors by a scalar (either +ve or ve no.).
- 10. Calculate the scalar product of two vectors in terms of their magnitudes and angle between them.



What is a Vector?

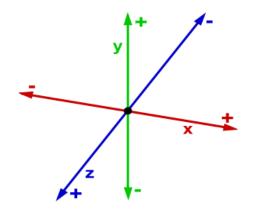
- Vectors are mathematical description of quantities which have magnitude and direction.
- The magnitude of a vector is a non-negative number often associated with a physical unit.
- Vectors have a starting point (tail) and an ending point (arrow) which points to a specific direction.
- Vectors are denoted by a letter with a small horizontal arrow pointing to the right above it (\vec{x}) .
- Vector quantities are important in physics.

What is a Vector? (Difference between vector and scalar quantities)



Cartesian Coordinate System

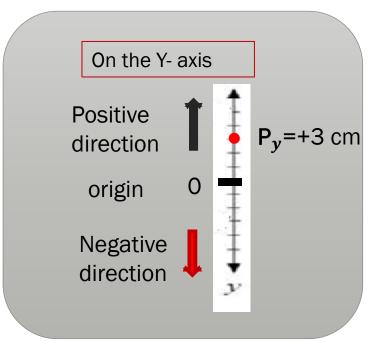
■ A Cartesian coordinate system is defined as a set of two or more axes with angles of 90° between each them. Hence they are perpendicular or orthogonal to one another.



■ In a one-dimensional coordinate system we have one axis (e.g x):

The position of a point can be written as $P=(P_x)$

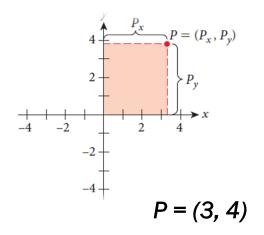
The point P has the x-coordinate P_x = - 2.5 cm



Cartesian Coordinate System

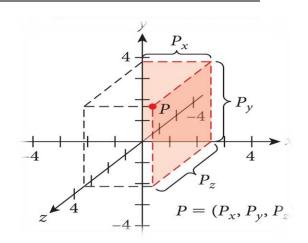
- We can define a two-dimensional coordinate system:
- By typically labelling the horizontal axis x and the vertical axis y.
- We can then specify any point *P* (position) in 2-dimensional space by specifying its coordinates

$$P = (P_x, P_y)$$



- We can define a three-dimensional coordinate system:
- By typically labelling the horizontal axis x, the vertical axis y and the third orthogonal axis z.
- We can then specify any point P (position) in 3dimensional space by specifying its coordinates

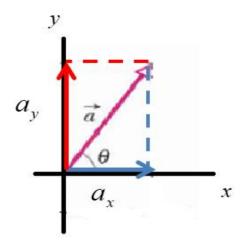
$$P = (P_x, P_y, P_z)$$



$$P = (3, 4, 3)$$

- Resolving a vector is the process of finding its components.
- A component is the projection of the vector on an axis.

Measuring the angle from x direction

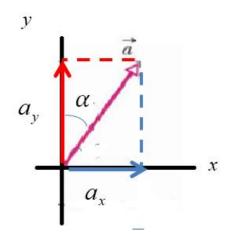


We know from mathematics that:

$$cos\theta = \frac{a_x}{a}$$
$$sin\theta = \frac{a_y}{a}$$

$$a_x = a \cos \theta \ and \ a_y = a \sin \theta$$

Measuring the angle from y direction

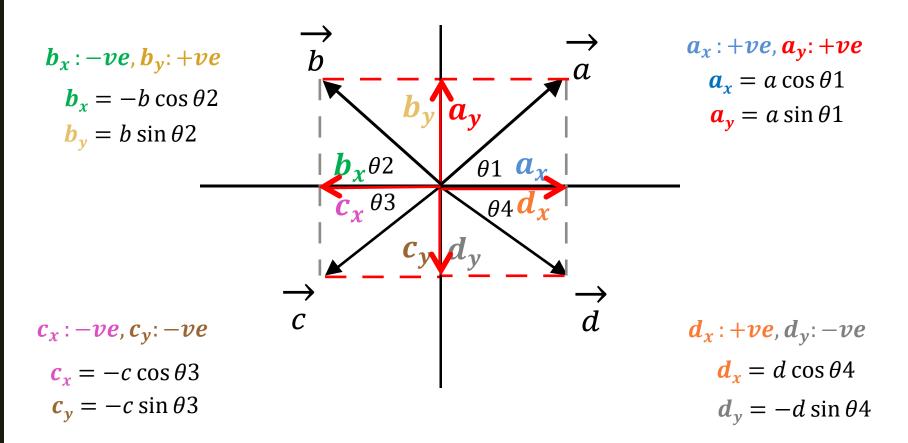


We know from mathematics that:

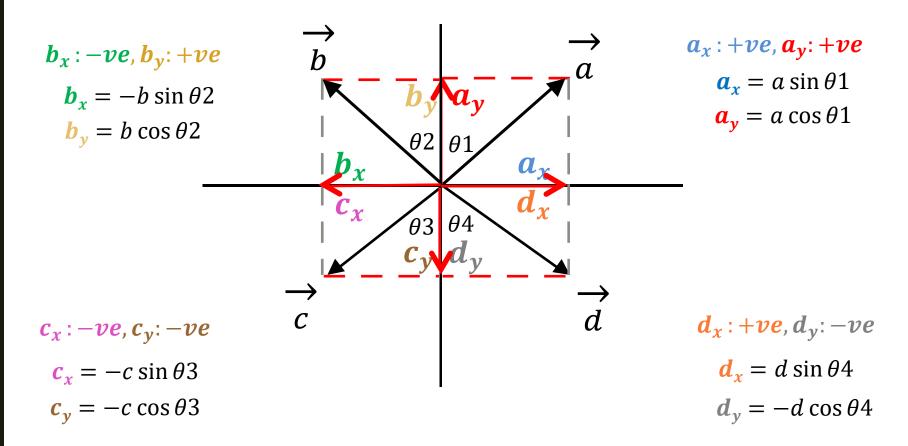
$$cos\alpha = \frac{a_y}{a}$$
$$sin\alpha = \frac{a_x}{a}$$

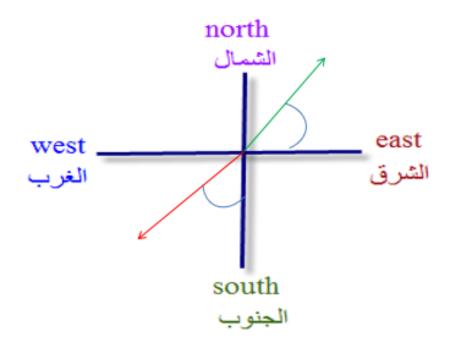
$$a_x = a \sin \alpha \ and \ a_y = a \cos \alpha$$

A more general way of finding vector components the angle is measured with respect to x-axis



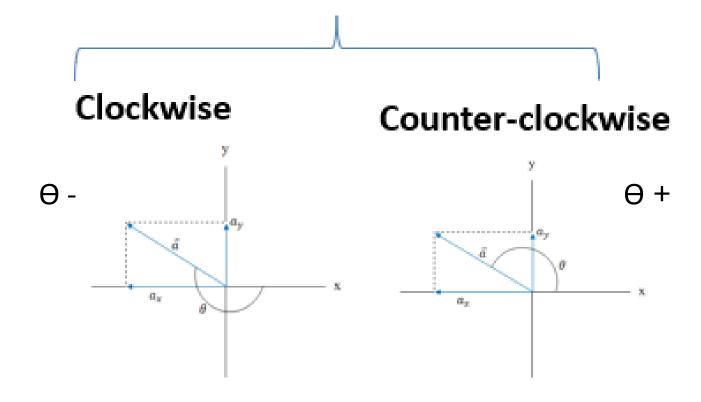
More general ways of finding vector component Angle is measured with respect to y-axis





North of east = toward the north from due east

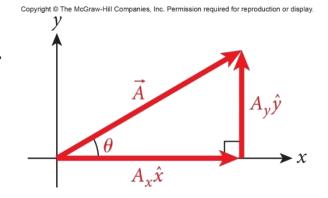
West of south = = toward the west from due south



Vector Length and Direction

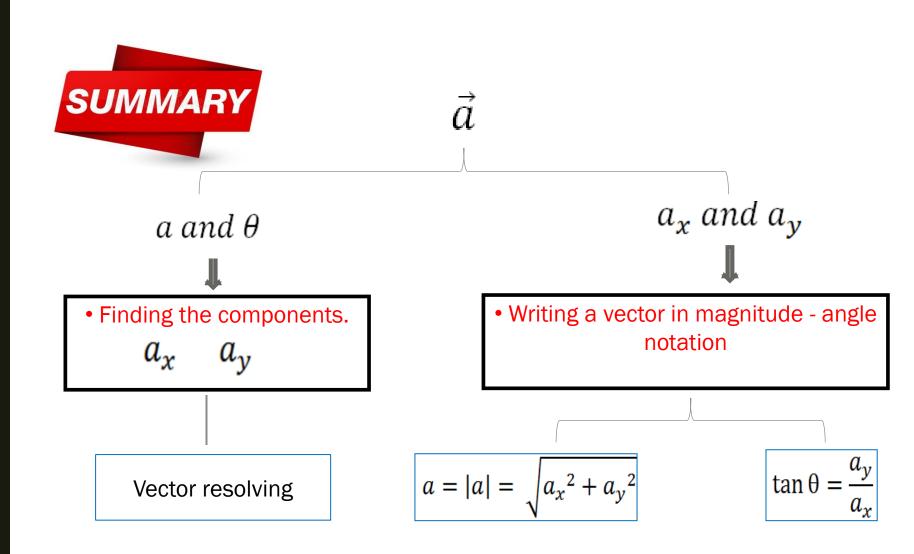
- Knowing the components of a vector, we can calculate its length and direction.
- Vectors in 2 dimensions (most important case)
 - <u>The length (using Pythagorean theorem) is:</u>

$$A = \sqrt{A_x^2 + A_y^2}$$



- <u>The direction</u> is defined by:
 - $\theta = \tan^{-1} \frac{A_y}{A_x}$ (be careful with the inverse tangent)

Vector Length and Direction



Unit Vectors (write a vector in the unit vector notation)

- Unit vectors are a set of special vectors that make the math associated with vectors easier
- Unit vectors have magnitude 1 and are directed along the main axes of the coordinate system.
- In Cartesian coordinates, the unit vectors are:

$$\hat{i} = \hat{x} = (1,0,0)$$

$$\hat{j} = \hat{y} = (0,1,0)$$

$$\hat{k} = \hat{z} = (0,0,1)$$

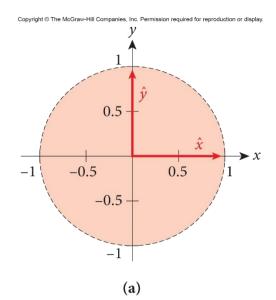
We can write the vector in a unit vector notation

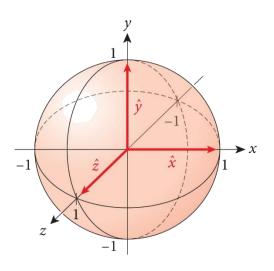
$$\vec{A} = A_x \hat{x} + A_y \hat{y} + A_z \hat{z}$$

$$\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$$

Scalar components

• Another way to write a vector $\vec{A} = (A_x, A_y, A_z)$

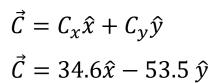


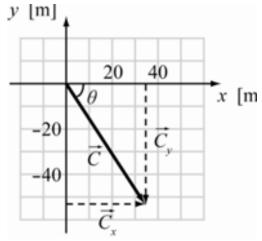


(b)

Exercise 1.77 (Page 30)

A vector \vec{C} has components C_x = 34.6 m and C_y = - 53.5 m. Find the vector's length and angle with the x-axis.





An angle is measured clockwise from the positive *x*-axis and consider the measure to be negative.

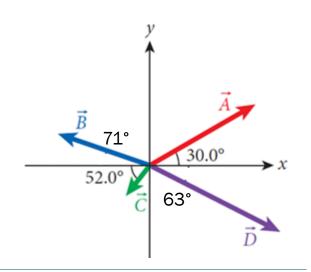
$$\left| \vec{C} \right| = \sqrt{C_x^2 + C_y^2}, \quad \tan \theta = \left(\frac{C_y}{C_x} \right)$$

CALCULATE:
$$|\vec{C}| = \sqrt{(34.6 \text{ m})^2 + (-53.5 \text{ m})^2} = 63.713 \text{ m}, \ \theta = \tan^{-1} \left(\frac{-53.5 \text{ m}}{34.6 \text{ m}}\right) = -57.108^{\circ}$$

ROUND: $\vec{C} = 63.7 \text{ m}, \ \theta = -57.1^{\circ}$

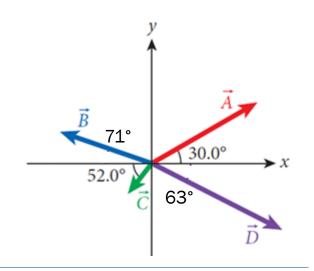
Extra Exercise

1.67 Find the components of the vectors \vec{A} , \vec{B} , \vec{C} , and \vec{D} , if their lengths are given by A = 75.0, B = 60.0, C = 25.0, D = 90.0 and their direction angles are as shown in the figure. Write the vectors in terms of unit vectors.



Extra Exercise

1.67 Find the components of the vectors \vec{A} , \vec{B} , \vec{C} , and \vec{D} , if their lengths are given by A = 75.0, B = 60.0, C = 25.0, D = 90.0 and their direction angles are as shown in the figure. Write the vectors in terms of unit vectors.



1) The unit vector notation is represented as:

$$\vec{A} = A_x \hat{x} + A_y \hat{y} + A_z \hat{z}$$

$$\vec{A} = A\cos(30)\,\hat{x} + A\sin(30)\,\hat{y}$$

$$\vec{A} = 75\cos(30)\,\hat{x} + 75\sin(30)\,\hat{y} = 64.9\,\hat{x} + 37.5\,\hat{y}$$

$$\vec{B} = -B\sin(71)\hat{x} + B\cos(71)\hat{y}$$

$$\vec{B} = -60 \sin{(71)}\hat{x} + 60 \cos{(71)}\hat{y} = -56.7 \hat{x} + 19.5 \hat{y}$$

$$\vec{C} = -C\cos(52)\,\hat{x} - C\sin(52)\,\hat{y}$$

$$C = -25\cos(52)\,\hat{x} - 25\sin(52)\,\hat{y} = -15.3\,\hat{x} - 19.7\,\hat{y}$$

$$\vec{D} = D \sin(63) \hat{x} - D \cos(63) \hat{y}$$

$$\overline{D} = 90 \sin(63) \hat{x} - 90 \cos(63) \hat{y} = 80.19 \hat{x} - 40.85 \hat{y}$$

Vector Addition using Components

For most practical purposes, we will add vectors using the component method

$$\vec{C} = \vec{A} + \vec{B}$$

$$\vec{C} = C_x \hat{x} + C_y \hat{y} + C_z \hat{z}$$

$$C_x = A_x + B_x$$

$$C_y = A_y + B_y$$

$$C_z = A_z + B_z$$

In the same way, we can find the difference (vector subtraction)

$$\overrightarrow{D} = \overrightarrow{A} - \overrightarrow{B}$$

$$\overrightarrow{D} = D_x \hat{x} + D_y \hat{y} + D_z \hat{z}$$

$$D_x = A_x - B_x$$

$$D_y = A_y - B_y$$

$$D_z = A_z - B_z$$

Vector Addition using Components

Adding vectors using the component method:

$$\vec{a} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k}$$

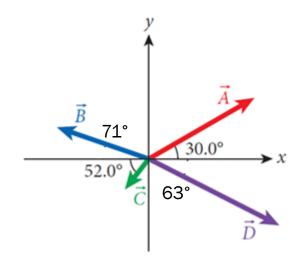
$$\vec{b} = b_x \hat{i} + b_y \hat{j} + b_z \hat{k}$$

$$\vec{a} + \vec{b} = (a_x + b_x)\hat{i} + (a_y + b_y)\hat{j} + (a_z + b_z)\hat{k}$$

Note: this can also be applied to vector subtraction

Exercise: 1.68 (Page 30)

- •1.68 Use the components of the vectors from Problem 1.67 to find
- a) the sum $\vec{A} + \vec{B} + \vec{C} + \vec{D}$ in terms of its components
- b) the magnitude and direction of the sum $\vec{A} \vec{B} + \vec{D}$

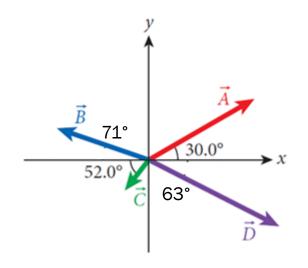


Solution:

Vector	x-component	y-component
$ec{A}$	64.9	37.5
$ec{B}$	- 56.7	19.5
$ec{\mathcal{C}}$	- 15.3	- 19.7
\overrightarrow{D}	80.19	- 40.85

Exercise: 1.68 (Page 30)

- •1.68 Use the components of the vectors from Problem 1.67 to find
- a) the sum $\vec{A} + \vec{B} + \vec{C} + \vec{D}$ in terms of its components
- b) the magnitude and direction of the sum $\vec{A} \vec{B} + \vec{D}$



Solution:

a)
$$\vec{A} + \vec{B} + \vec{C} + \vec{D} =$$

Vector	x-component	y-component
$ec{A}$	64.9	37.5
\vec{B}	- 56.7	19.5
$ec{\mathcal{C}}$	- 15.3	- 19.7
\overrightarrow{D}	80.19	- 40.85

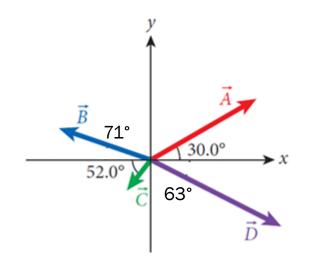
73.09

- 3.55

$$\vec{A} + \vec{B} + \vec{C} + \vec{D} = 73.09 \,\hat{x} - 3.55 \,\hat{y}$$

Exercise: 1.68 (Page 30)

- •1.68 Use the components of the vectors from Problem 1.67 to find
- a) the sum $\vec{A} + \vec{B} + \vec{C} + \vec{D}$ in terms of its components
- b) the magnitude and direction of the sum $\vec{A} \vec{B} + \vec{D}$



Solution:

b)
$$\vec{A} - \vec{B} + \vec{D} =$$

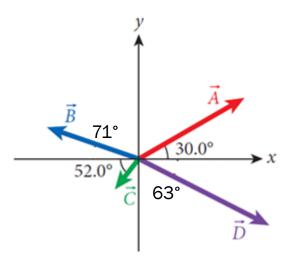
Vector	x-component	y-component
$ec{A}$	64.9	37.5
\overrightarrow{B}	- - 56.7	19.5
		+
\overrightarrow{D}	80.19	- 40.85
	201.79	- 22.85

$$\vec{A} - \vec{B} + \vec{D} = 201.79 \,\hat{x} - 22.85 \,\hat{y}$$

b)
$$\vec{A} - \vec{B} + \vec{D} = 201.79 \,\hat{x} - 22.85 \,\hat{y}$$

$$\left[\vec{A} - \vec{B} + \vec{D} \right] = \sqrt{(201.79)^2 + (-22.85)^2} = 203.08$$

$$\theta = tan^{-1} \left(\frac{-22.85}{201.79} \right) = -6.46^o$$



9/6/2020 Chapter 1 24

Multiplication of a Vector with a Scalar

Multiplication of a vector with a positive scalar

results in another vector that points in the same direction but has a magnitude that is the product of the scalar and the magnitude of the original vector.

$$\vec{a} = 2\hat{\imath} + 3\hat{\jmath}$$
$$2\vec{a} = 4\hat{\imath} + 6\hat{\jmath}$$

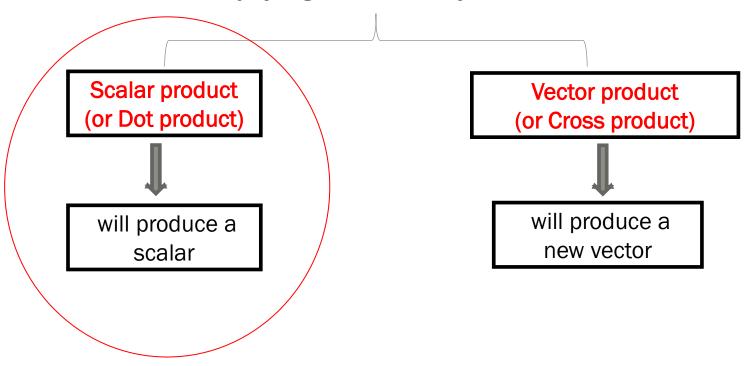
Multiplication of a vector with a negative scalar

results in another vector that points in the opposite direction but has a magnitude that is the absolute value of the product of the negative scalar and the magnitude of the original vector.

$$\vec{a} = 2\hat{\imath} + 3\hat{\jmath}$$
$$-2\vec{a} = -4\hat{\imath} - 6\hat{\jmath}$$

Multiplication of a Vector with a Vector

Multiplying a vector by a vector



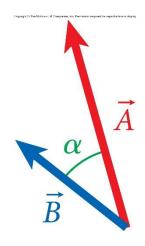
Scalar Product (dot product)

- It is sometimes called the dot product.
- The scalar vector product is defined as:

$$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \alpha$$

In terms of Cartesian coordinates:

$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$$



If the two vectors form a 90° angle, the scalar product is zero.

If
$$\alpha = 90^{\circ} \rightarrow \vec{A} \cdot \vec{B} = 0$$

We can use the scalar product to find the angle between two vectors in terms of their Cartesian coordinates:

$$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \alpha \implies \alpha = \cos^{-1} \frac{A_x B_x + A_y B_y + A_z B_z}{\sqrt{A_x^2 + A_y^2 + A_z^2} \sqrt{B_x^2 + B_y^2 + B_z^2}}$$

Exercise: 1.15 (Page 28)

1.15 For the two vectors $\vec{A} = (2,1,0)$ and $\vec{B} = (0,1,2)$, what is their scalar product, $\vec{A} \cdot \vec{B}$?

- a) 3 b) 6 c) 2 d) 0 e) 1

Exercise: 1.15 (Page 28)

1.15 For the two vectors $\vec{A} = (2,1,0)$ and $\vec{B} = (0,1,2)$, what is their scalar product, $\vec{A} \cdot \vec{B}$?

- a) 3 b) 6 c) 2 d) 0 e) 1

Answer: The two vectors are given in Cartesian Coordinate and we do not have the angle between the two vectors, hence we will use;

$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$$

$$\vec{A} \cdot \vec{B} = (2 \times 0) + (1 \times 1) + (0 \times 2) = 1$$

Example: 1.5 (Page 23)

EXAMPLE 1.5 Angle Between Two Position Vectors

PROBLEM

What is the angle α between the two position vectors shown in Figure 1.25, $\vec{A} = (4.00, 2.00, 5.00)$ cm and $\vec{B} = (4.50, 4.00, 3.00)$ cm?

$$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \alpha \implies \alpha = \cos^{-1} \frac{A_x B_x + A_y B_y + A_z B_z}{\sqrt{A_x^2 + A_y^2 + A_z^2} \sqrt{B_x^2 + B_y^2 + B_z^2}}$$

$$|\vec{A}| = \sqrt{4.00^2 + 2.00^2 + 5.00^2}$$
 cm = 6.71 cm

$$|\vec{B}| = \sqrt{4.50^2 + 4.00^2 + 3.00^2}$$
 cm = 6.73 cm

$$\vec{A} \cdot \vec{B} = 4.00 \cdot 4.50 + 2.00 \cdot 4.00 + 5.00 \cdot 3.00 \text{ cm}^2 = 41.0 \text{ cm}^2$$

$$\alpha = \cos^{-1} \left(\frac{41.0 \text{ cm}^2}{(6.71 \text{ cm})(6.73 \text{ cm})} \right) = 24.7^{\circ}$$

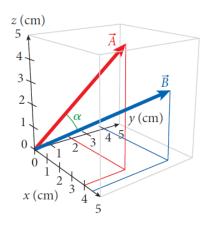


FIGURE 1.25 Calculating the angle between two position vectors.

Equation summary

Vector Notation

$$\vec{A} = A_x \hat{x} + A_y \hat{y} + A_z \hat{z}$$

Vector resolving, angle is measured from the x direction in first quadrant

$$a_x = a \cos \theta$$
 and $a_y = a \sin \theta$

Vector resolving, angle is measured from the *y* direction in first quadrant

$$a_x = a \sin \alpha$$
 and $a_y = a \cos \alpha$

Vector Length and direction

$$A = \sqrt{A_x^2 + A_y^2}$$

$$\theta = \tan^{-1} \frac{A_y}{A_x}$$

Dot product

$$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \alpha$$

$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$$

Angle between two vectors

$$\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \alpha$$

$$\alpha = \cos^{-1} \frac{A_x B_x + A_y B_y + A_z B_z}{\sqrt{A_x^2 + A_y^2 + A_z^2} \sqrt{B_x^2 + B_y^2 + B_z^2}}$$

The END CHAPTER (1)